skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Okeola, Abass Abayomi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Externally bonded wet-layup carbon fiber-reinforced polymer (CFRP) strengthening systems are extensively used in concrete structures but have not found widespread use in deficient steel structures. To address the challenges of the adhesive bonding of wet-layup CFRP to steel substrates, this study investigated the effect of core–shell rubber (CSR) nanoparticles on the curing kinetics, glass transition temperature (Tg) and mechanical properties of ambient-cured epoxy/CSR blends. The effects of silane coupling agent and CSR on the adhesive bond properties of CFRP/steel joints were also investigated. The results indicate that CSR nanoparticles have a mild catalytic effect on the curing kinetics of epoxy under ambient conditions. The effect of CSR on the Tg of epoxy was negligible. Epoxy adhesives modified with 5 to 20%wt. of CSR nanoparticles were characterized with improved ductility over brittle neat epoxy; however, the addition of CSR nanoparticles reduced tensile strength and modulus of the adhesives. An up to 250% increase in the single-lap shear strength of CFRP/steel joints was accomplished in CSR-modified joints over neat epoxy adhesive joints. 
    more » « less